Chapter 3 Practice Test

- 1. Under what conditions is a function not differentiable at a point?
- 2. Find the equation of the line tangent to $f(x) = x^4 + 2x^2 5$ at x = 1.

Find the derivative of the function.

3.
$$f(x) = \frac{1}{2} x^{10}$$

$$10. \ \ f(t) = \frac{\sin t}{2t+1}$$

4.
$$f(x) = e^{2x+1}$$

11.
$$g(x) = \cos 6x$$

5.
$$f(t) = 5t^4 + 4t^3 - t^2 + 3t - 8$$

12.
$$f(t) = 9 \sin^2 4t$$

6.
$$y = 4\cos\theta + 2\pi\sin\theta$$

13.
$$f(x) = -2 \ln x^4$$

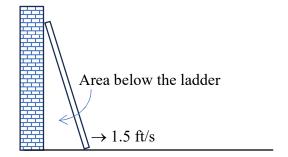
7.
$$y = \frac{8}{x^5}$$

14.
$$y = \arctan 2x$$

8.
$$f(x) = \frac{x^3}{x^2 + 2}$$

15.
$$h(x) = 2 \arcsin(x^2 - 2x)$$

9.
$$f(x) = (x^3 - 2x)(3x + 4)$$


16.
$$y = log_7 (x^2 + 5)$$

- 17. Find dy/dx by implicit differentiation: $2x 3y^2 = 16$
- 18. Find the second derivative of the function $g(x) = 1 + 4 \cos x$.

19. Let $f(x) = x^3 + 2$, and let g be the inverse of f. Find the value of g' when f(x) = 10

Original Function			Inverse Function		
X	f(x)	f'(x)	X	g(x)	g'(x)
	10				

- 20. The height of an object can be determined using the function $s(t) = -16t^2 + 40t + 52$ feet.
 - a. What is the object's velocity after 10 seconds?
 - b. What is its velocity after 25 seconds?
 - c. What is the maximum height the object reaches?
- 21. The radius of a sphere is expanding at a rate of 3 cm per second. How fast is the volume of the sphere changing when the radius is 8 cm long? Volume_{sphere} = $4/3 \pi r^3$
- 22. A 17-foot ladder is sliding down a wall. The horizontal distance of the base of the ladder from the wall is increasing at a rate of 1.5 feet per second. Find the rate of change of the area below the ladder when the base of the ladder is 8 feet from the wall.

23. Use Newton's method to find the zero for the function $f(x) = \sqrt{2x - 1} - 2$. Use x = 2 for your first iteration. Continue the process until two successive approximations differ by less than 0.001.

n	X _n	f(x _n)	$f'(x_n)$	$x_n - f(x_n)/f'(x_n)$